Our long-term goal is to understand how gene expression and genome packaging is affected by genetic and epigenetic changes that happen during evolution, development and in disease, in particular cancer.  Our research approach is to computationally analyse global datasets in order to understand general mechanisms, test existing (but previously untested) ideas or propose novel hypotheses. We believe that this is a very complementary research approach to the traditional way of experimentally dissecting the parts of the cell.

Our Research

In the past we have analysed data from yeast to human to understand why some genes are harmful when they are overexpressed. Increased gene dosage, as for example by gene amplification, is associated with diverse human pathologies, including cancer. We have also studied the origins and stability of genetic redundancy, the phenomenon whereby mutations in many genes have little effect on an organism. A better understanding of genetic redundancy, or buffering, may offer insight into how to target cancer cells where this redundancy is failing.

More recently we have shown that sequence composition determines the packaging of the human genome in the male germline. GC-rich sequences remain packaged in nucleosomes in the male gametes. This raises the possibility that at these GC-rich sites epigenetic information can be transmitted from one generation to the next.  Understanding how and to what extent epigenetic information can be transmitted between generations is important because in the long term it may help us predict better disease risk in individuals.

We are currently studying how the promoter type of human genes affects their chromatin organization. We recently showed that genes with CpG-island promoters have distinct chromatin from genes with other types of promoter. Cancer cells often have very different epigenetic marks from normal cells. Our aim is to understand how global epigenetic changes, associated with cancer or induced by anti-cancer therapeutic drugs, affect the regulation of different types of human genes.

Group Members:

Previous Members of Lab:

Lorena Pantano



  • 2014 Spanish National Postdoctoral Fellowship (MINECO) to Yulia Medvedeva 

  • 2014 Max Planck - Prince of Asturias Award Mobility Grant to Eduard Casas

  • 2014 Group recognized by the Catalan Research Agency (AGAUR)

  • 2014 EpiGeneSys Travel Fellowship to Eduard Casas

  • 2013 Elected Associate Member of the EU Network of Excellence EpiGeneSys

  • 2011 Spanish National Research Grant (MICINN)

  • 2011 European Reintegration Grant - Framework Programme 7

  • 2010 Ramon y Cajal Award to Tanya Vavouri


Tanya Vavouri (
Office 1- 5 (first floor)
Tel: (+34) 93 554 3078

Selected Publications

Ost A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, Pantano L, Boenisch U, Itskov PM, Stoeckius M, Ruf M, Rajewsky N, Reuter G, Iovino N, Ribeiro C, Alenius M, Heyne S, Vavouri T, Pospisilik JA. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 2014 Dec; 159(6): 1352-64

Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front Genet 2014; 5: 330

Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballescà JL, Oliva R. Genomic and proteomic dissection and characterisation of the human sperm chromatin. Mol. Hum. Reprod. 2014 Sep;

Doglio L, Goode DK, Pelleri MC, Pauls S, Frabetti F, Shimeld SM, Vavouri T, Elgar G. Parallel evolution of chordate cis-regulatory code for development. PLoS Genet. 2013 Nov; 9(11): e1003904

Vavouri T, Lehner B. Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biol. 2012 Nov; 13(11): R110

Vavouri T, Lehner B. Chromatin organization in sperm may be the major functional consequence of base composition variation in the human genome. PLoS Genet. 2011 Apr; 7(4): e1002036

Vavouri T, Semple JI, Garcia-Verdugo R, Lehner B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 2009 Jul; 138(1): 198-208

Vavouri T, Lehner B. Conserved noncoding elements and the evolution of animal body plans. Bioessays 2009 Jul; 31(7): 727-35

Vavouri T, Semple JI, Lehner B. Widespread conservation of genetic redundancy during a billion years of eukaryotic evolution. Trends Genet. 2008 Oct; 24(10): 485-8

Vavouri T, Walter K, Gilks WR, Lehner B, Elgar G. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol. 2007; 8(2): R15

See all

Generalitat de Catalunya

Unió Europea


Universitat Autònoma de Barcelona

Ajuntament de Badalona

Institut Català de la Salut

Germans Trias i Pujol Hospital

Fundació Institut d'investigació en Ciències de la Salut Germans Trias i Pujol

Back to Top